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1. Abstract

The neural network is one of the most important techniques in 
machine learning, which belong to artificial intelligence. In this 
paper, the architecture of a neural network is suitably extended to 
calculate multi-dimensional integrals of an arbitrary function. The 
final results are obtained without any numerical integration. The 
neural network is inherently a machine learning technique and 
thus serves as a black-box transformation. Our technique can treat 
not only deterministic but also random integrand. Only a small 
number of sampling points for the integrand are required to give 
accurate integration results.
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3. Introduction

Recently, the machine learning [1] has attracted interest of 
researchers in different fields all over the world. The machine 
learning belongs to the scope of artificial intelligence. It teaches 
a computer to predict the response of a system by learning from 
experiences. The goal is to build an intelligent system. A machine 
learning technique is basically a black box, which can achieve both 
identification and regression. The term “black box” means that the 
relation between the input and output of a system is very complex. 
The neural network [2] is one of the most important techniques 
in machine learning. It is basically a black box that accepts certain 
input and produces certain output. The neural network is usually 
utilized to model the relation between the input and output of 
a complicated system. Recently, it has been applied to many 
fields of engineering, e.g., Electromagnetics [2]. For example, 
we have utilized neural networks as nonlinear models to treat 
different electromagnetic problems [3-5]. In [6], the architecture 
of a neural network is extended to calculate the derivative of the 

system output. The success of [6] then motivates us to develop an 
alternative extension of the neural network to compute the integral 
of the system output. The neural network utilized in this study is 
the RBF-NN (Radial Basis Function Neural Network) [2]. The goal 
is to estimate N-dimensional (N is a positive integer) integrals of 
an arbitrary function. Initially, the relation between the integrand 
(i.e., the function to be integrated) and its variables is modeled 
by an RBF-NN. This RBF-NN has one node in the output layer to 
represent the integrand and N nodes in the input layer to represent 
the integral variables. There still exist some nodes and Gaussian 
bases in the hidden layer for nonlinear mapping. After the RBF-NN 
is trained, the weights within the neural network are determined. 
The neural-network output becomes the linear combination of 
different Gaussian bases together with their weights. The original 
integration is then transformed into the linear combination of 
integrals on different Gaussian bases. The final results can be 
found from look-up tables of mathematical handbooks without 
any numerical integration. Numerical simulation shows that the 
results calculated by our neural-network based technique are 
consistent with those using ISML commercial subroutines. Due to 
the inherent black-box properties of neural networks, the proposed 
method has some benefits. It can treat not only deterministic but 
also random integrand. Only a small number of sampling points 
for the integrand are required to train the neural network, and then 
give accurate integration results. In other words, one does not need 
to know the overall characteristic of the integrand. These benefits 
will make the proposed method especially useful as the integrand 
is entirely obtained from practical measurement.

4. Formulations

Consider the N-dimensional integrals of an arbitrary function as
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In (1), the integrand )(xfunc  is an arbitrary function and x =
),,,( 21 Nxxx   contains components to represent the integral 

variables. Initially, an RBF-NN is utilized to model the nonlinear 
mapping of )(xfuncx → . The architecture of the RBF-NN is 
shown in Figure 1

There are N nodes in the input layer to represent the integral 
variables x1, x2, …, x3. There is one node in the output layer to 

represent the integrand )(xfunc . There still exist J nodes in the 
hidden layer for nonlinear mapping. According to [2], the output 
of the RBF-NN can be expressed as
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where jw  and )(⋅jg  represent the weight and nonlinear 
transformation function of the j-th node in the hidden layer, 

respectively. In general, )(⋅jg  is given as [2]
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where jv  is the mean corresponding to the j-th hidden node and 

2σ  is the

auto-covariance of the Gaussian function. The RBF-NN is trained 

by some learning samples of )(xfuncx → . The detailed 
training procedures are given in [2]. After the neural network 

is trained, all the weights jw , j = 0, 1, …, J are determined. By 
substituting (2) and (3) into (1), we have

(4a)

where )(⋅erf  is the error function and its value can be looked up 
from most mathematical handbooks. Therefore, the N-dimensional 
integrals in (1) is replaced by (4b) without any numerical 
integration. The final results of 4(b) can be obtained from look-up 
tables. In other words, the RBF-NN is extended to calculate multi-
dimensional integrals in (1), as shown in Figure 1 (the part above 
the horizontal dotted line). It should be noted that the training 
work of the neural network is performed only once, i.e., during 

the mapping of )(xfuncx → . In general, the training data of 

)(xfuncx →  are easy to obtain.

5. Simulation

Without loss of generality, the simulation of three-dimensional 
integration is considered, i.e., N=3. The integrand in (1) is assumed 
to be
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For simplicity, the integral limits in (1) are assumed to be

2a = 2a = 3a = -d and 1b = 2b = 3b = d. There are 15 nodes in the 
hidden layer of the RBF-NN, i.e., J=15. The auto-covariance of the 
Gaussian basis is chosen to be 5.02 =σ . The neural network 
is trained by sampled data in intervals of dxxxd ≤≤− 321 ,,
. In the sampling process, the nx  (n=1, 2, 3) is randomly sampled 
once for every 0.1 unit length. Following the above analyses, 
the calculated results of integration (answer) with respect to the 
integral limit d are shown in Figure 2. For comparison, the results 
of numerical integration calculated by IMSL (Fortran) commercial 
subroutines are also given. It shows that they are in good agreement. 
In Figure 2.
there are some ripples on the resultant curve of our neural-
network based technique. This phenomenon is reasonable because 
the analytical integrand in (5) is replaced by a black-box neural 
network in the proposed technique. It should be noted that the 
proposed integration technique is still useful even though the 

Figure 1: The RBF-NN architecture and its extension of integration.
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integrand is not deterministic. For example, if (5) is changed as
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where rand  is a random variable with the probability uniformly 
distributed in the interval of [-0.05, 0.05]. The rand in (6) means 

there may exist %5±  random error with respect to (5). This 
random component often represents the uncertainty in practical 
measurement. In such a situation, procedures of the proposed 
integration technique are not affected at all since the neural 
network is inherently a black box. Following the same procedures 
as the previous example, the mean for the final integration result 
is almost the same as Figure 2 and is not shown again. In fact, no 
mathematical model is required for the integrand in our neural-
network integration technique. The integrand may be entirely 
composed of discrete data from practical measurement. This 
is because the neural network requires only a small number 
of sampled data to serve as learning samples. The reason why 
we use the analytical model of (5) in the simulation is that the 
same problem can be calculated by commercial subroutines for 
comparison. The above simulation is implemented using personal 
computer with CPU of Intel(R) Core(TM) i7-4790 3.6GHz. All the 
above programs are coded using Fortran programming language.

6. Conclusions

In this study, the RBF-NN is successfully extended to calculate 
multi-dimensional integrals of an arbitrary function. The reason 
why we choose the RBF-NN model is that it contains bases (i.e., 
Gaussian bases) that are easy to implement multi-dimensional 
integrals. The RBF-NN is inherently a general regression model [7] 

and has been successfully utilized to treat nonlinear engineering 
problems [3-5]. Numerical simulation shows that the integration 
results calculated by the proposed method are consistent with those 
given by IMSL commercial subroutines. Since the neural network 
is inherently a black box, the proposed integration technique can 
treat not only deterministic but also random integrand. Only a 
small number of sampling points for the integrand are required 
to train the neural network, and then give accurate integration 
results. One does not need to know the overall characteristic of 
the integrand. The proposed method is especially useful as the 
integrand is entirely obtained from difficult measurement or 
complicated mathematics [8].
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Figure 2: Calculated results of integration (answer) with respect to the 
integral limit (d) by our neural-network based technique and by IMSL 
commercial subroutines.
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